The "Lid" in the Streptococcus pneumoniae SrtC1 Sortase Adopts a Rigid Structure that Regulates Substrate Access to the Active Site.

نویسندگان

  • Alex W Jacobitz
  • Emmanuel B Naziga
  • Sung Wook Yi
  • Scott A McConnell
  • Robert Peterson
  • Michael E Jung
  • Robert T Clubb
  • Jeff Wereszczynski
چکیده

Many species of Gram-positive bacteria use sortase enzymes to assemble long, proteinaceous pili structures that project from the cell surface to mediate microbial adhesion. Sortases construct highly stable structures by catalyzing a transpeptidation reaction that covalently links pilin subunits together via isopeptide bonds. Most Gram-positive pili are assembled by class C sortases that contain a "lid", a structurally unique N-terminal extension that occludes the active site. It has been hypothesized that the "lid" in many sortases is mobile and thus capable of readily being displaced from the enzyme to facilitate substrate binding. Here, we show using NMR dynamics measurements, in vitro assays, and molecular dynamics simulations that the lid in the class C sortase from Streptococcus pneumoniae (SrtC1) adopts a rigid conformation in solution that is devoid of large magnitude conformational excursions that occur on mechanistically relevant time scales. Additionally, we show that point mutations in the lid induce dynamic behavior that correlates with increased hydrolytic activity and sorting signal substrate access to the active site cysteine residue. These results suggest that the lid of the S. pneumoniae SrtC1 enzyme has a negative regulatory function and imply that a significant energetic barrier must be surmounted by currently unidentified factors to dislodge it from the active site to initiate pilus biogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1

The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation ...

متن کامل

Structural Basis for Group B Streptococcus Pilus 1 Sortases C Regulation and Specificity

Gram-positive bacteria assemble pili through class C sortase enzymes specialized in polymerizing pilin subunits into covalently linked, high-molecular-weight, elongated structures. Here we report the crystal structures of two class C sortases (SrtC1 and SrtC2) from Group B Streptococcus (GBS) Pilus Island 1. The structures show that both sortases are comprised of two domains: an 8-stranded β-ba...

متن کامل

Crystal Structure of Spy0129, a Streptococcus pyogenes Class B Sortase Involved in Pilus Assembly

Sortase enzymes are cysteine transpeptidases that mediate the covalent attachment of substrate proteins to the cell walls of gram-positive bacteria, and thereby play a crucial role in virulence, infection and colonisation by pathogens. Many cell-surface proteins are anchored by the housekeeping sortase SrtA but other more specialised sortases exist that attach sub-sets of proteins or function i...

متن کامل

Structural and Enzymatic Characterization of the Choline Kinase LicA from Streptococcus pneumoniae

LicA plays a key role in the cell-wall phosphorylcholine biosynthesis of Streptococcus pneumonia. Here we determined the crystal structures of apo-form LicA at 1.94 Å and two complex forms LicA-choline and LicA-AMP-MES, at 2.01 and 1.45 Å resolution, respectively. The overall structure adopts a canonical protein kinase-like fold, with the active site located in the crevice of the N- and C-termi...

متن کامل

Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone.

Sortase A (SrtA) from Gram positive pathogens is an attractive target for inhibitors due to its role in the attachment of surface proteins to the cell wall. We found that the plant natural product trans-chalcone inhibits Streptococcus mutans SrtA in vitro and also inhibited S. mutans biofilm formation. Mass spectrometry revealed that the trans-chalcone forms a Michael addition adduct with the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 120 33  شماره 

صفحات  -

تاریخ انتشار 2016